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Weather significantly influences human activities, including environmental man-
agement, health, agriculture, and urban planning. Accurate temperature prediction is 
essential for managing energy consumption, public health, and agriculture. This study 
employs Long Short Term Memory (LSTM) networks for weather fore-casting at the 
Lampung Climatology Station, focusing on minimum, maximum, and average 
temperatures. LSTM networks, capable of learning long-term de-pendencies in data, have 
proven effective in various forecasting applications. The research aims to identify the 
optimal LSTM model for temperature forecasting us-ing time series data from the 
Lampung Climatology Station. Different LSTM model parameters, such as hidden 
neurons, batch size, and epochs, were tested to find the best configuration with the 
smallest Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) 
values. The results indicate that the optimal LSTM model for forecasting minimum air 
temperature (X1) includes 100 hidden neurons, a batch size of 4, and 50 epochs, achieving 
an RMSE of 0.59 and a MAPE of 1.90%. For maximum air temperature (X2), the best 
model uses 5 hidden neurons, a batch size of 4, and 50 epochs, with an RMSE of 1.22 and 
a MAPE of 3.15%. The optimal model for average air temperature (X3) comprises 5 hidden 
neurons, a batch size of 4, and 150 epochs, achieving an RMSE of 0.73 and a MAPE of 
2.10%. These findings demonstrate the effective-ness of LSTM models in accurately 
forecasting air temperatures, providing valu-able insights for applications ranging from 
agricultural planning to disaster pre-paredness. 

 

 
1. INTRODUCTION 

 

Weather plays a crucial role in human life, both 

directly and indirectly, influencing a wide range 

of areas, including environmental issues, health, 

agriculture, and urban planning. For instance, 

farmers rely heavily on weather patterns to 

determine the best times for planting and 

harvesting crops, while urban planners use 

weather data to design infrastructure that can 

withstand extreme weather conditions. 

Moreover, weather conditions can significantly 

impact public health, as seen in cases of heat-

waves or cold snaps, which can lead to increased 

mortality and morbidity. 

One of the key elements of weather that 

significantly impacts our daily lives is 

temperature. Accurate temperature prediction is 

essential for energy consumption management, 

public health, and the spread of diseases. 
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Temperature variations dic-tate heating and 

cooling demands, influence agricultural cycles, 

and affect human comfort and health. The need 

for reliable weather forecasting methods has 

thus be-come paramount, driving the 

development of advanced predictive models. 

Although rainfall is important, it is not the focus 

of this study. 

In recent years, Long Short Term Memory 

(LSTM) networks, a type of recurrent neural 

network, have shown great promise in various 

forecasting applications, includ-ing weather 

prediction. LSTM networks are particularly 

suited for time series forecast-ing due to their 

ability to learn and remember long-term 

dependencies in data, which is a common 

challenge in weather prediction. By capturing 

patterns in historical weather data, LSTM 

models can provide more accurate forecasts, 

helping communi-ties and industries make 

better-informed decisions. 

Previous studies have successfully applied LSTM 

models to diverse domains. For example, LSTM 

networks have been used for rainfall prediction 

in Malang, showing significant improvements 

over traditional methods (Rizki et al, 2020). In 

commerce, LSTM has demonstrated 

effectiveness in product sales forecasting, 

highlighting its versatility and robustness 

(Wiranda and Sadikin, 2019). Similarly, LSTM 

models have been used in analyzing COVID-19 

cases (Qori et al, 2022), predicting cargo revenue 

(Aprian et al, 2020), and forecasting Bitcoin 

prices (Aldi and &amp; Adit- sania, 2018). 

Notably, LSTM has also been effective in 

predicting air quality and temperature in 

Bandung, achieving RMSE values of 1.85 for air 

quality and 3.15 for temperature (Khumaidi et al, 

2020). 

Building on this body of work, the current study 

aims to apply LSTM networks for weather 

forecasting at the Lampung Climatology Station. 

The focus will be on three key variables: 

minimum temperature (X1), maximum 

temperature (X2), and average temperature 

(X3). By experimenting with different LSTM 

model parameters, such as the number of hidden 

neurons, batch size, and epochs, this study seeks 

to identify the optimal model configuration that 

yields the smallest Mean Absolute Percentage 

Error (MAPE) and RMSE values. The objectives 

of this research are multifaceted: to de-termine 

the optimal LSTM model for temperature 

forecasting, evaluate the perfor-mance of the 

LSTM method, and generate accurate 

temperature forecasts using the best model, 

offering valuable information for various 

applications, from agricultural planning to 

disaster preparedness. 

 

2. METHOD 

 

Long Short Term Memory (LSTM) 

 

Long Short Term Memory (LSTM) is an 

advanced form of Recurrent Neural Net-work 

(RNN) introduced by Hochreiter and 

Schmidhuber in 1997. LSTM was devel-oped to 

address the limitations of traditional RNNs, 

particularly their inability to maintain long-term 

memory due to the vanishing gradient problem. 

This issue causes older information to become 

less relevant over time, reducing prediction 

accuracy (Zhao et al, 2017). Unlike RNNs, LSTM 

networks utilize memory cells and gate units—

input, forget, and output gates—to manage 

information flow and maintain long-term 

dependencies. This architecture allows LSTM to 

handle large sequential data effectively, making 

it suitable for applications like speech 

recognition and fore-casting. The ability of LSTM 

to remember and recall information over long 

periods addresses the shortcomings of RNNs, 

enabling more accurate predictions. 

The LSTM architecture features three primary 

gates: the input gate, forget gate, and output 
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gate. These gates control the flow of information 

into and out of the memory cells. The input gate 

determines what information is added to the 

memory cell, the forget gate decides what 

information is discarded, and the output gate 

regu-lates what information is used for the 

current output and passed to the next time step. 

This gating mechanism ensures efficient 

information management, allowing LSTM 

networks to read, store, and update information 

dynamically. As a result, LSTM networks can 

effectively handle both short-term and long-term 

memory, making them powerful tools for various 

sequential data tasks. The robust architecture of 

LSTM networks, characterized by these memory 

cells and gate units, has led to sig-nificant 

advancements in fields such as speech 

recognition and time series forecast-ing 

(Hochreiter and Schmidhuber, 1997). The ability 

of LSTM to track long-term dependencies in data 

has been further highlighted in various 

applications (Karpathy et al, 2015). The 

architecture of LSTM can be seen in Figure 1. 

 
Fig. 1. Long Short Term Memory (LSTM) 

Architecture. 

 

Denormalization 

Denormalization is the process of converting 

forecast results from normalized data back to 

their original form. This step is essential to 

compare the predicted data with actual values 

and assess the model's performance. When 

normalization was initially performed within the 

interval [0,1], denormalization is expressed by 

the equation (Wiranda and Sadikin, 2019): 

xt=x'(Xmax-Xmin)+Xmin (1). 

 

where xt  is the denormalized weather data value, 

x' is the normalized weather data, Xmin is the 

minimum value of the weather data, and Xmax is 

the maximum value of the weather data. 

 

Model Validation 

Validation is the process of testing the accuracy 

of a model's performance in predict-ing data to 

assess its effectiveness. Validation can be done 

using Root Mean Square Error (RMSE) and 

Mean Absolute Percentage Error (MAPE) for 

model evaluation (Wiranda and Sadikin, 2019). 

RMSE measures the accuracy of a model by 

calculat-ing the square root of the average 

squared differences between actual and 

predicted temperature data over multiple 

forecasting periods. It is formulated as: 

 

RMSE=t=1nYi-Yi2n (2) 

 

where Yi denotes the actual temperature at 

period t, Yi represents the predicted 

temperature, and n is the number of data points. 

On the other hand, MAPE quantifies the 

absolute percentage error between actual and 

predicted values, providing insight into the 

model's accuracy relative to the actual data. It is 

formulated as: 

 

MAPE=t=1nYi-YiYin×100 (3) 

 

where Yi and Yi represent actual and predicted 

temperature values respectively, and n is the 

total number of data points. 

A smaller MAPE value indicates that the LSTM 

model's predictions are closer to the actual 

values, making it a better model for weather 

forecasting. The range of MAPE values for 

evaluating an LSTM model's accuracy is shown 

in Table 1 (Hayuningtyas, 2017). 

Table 1. Range Category of MAPE Value. 
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MAPE Range Category 
< 10 % Excellent forecasting model capability 
10–20 % Good forecasting model capability 
20 –50 % Viable forecasting model capability 
>50 % Poor forecasting model capability 

 

Dataset 

The data used in this study are secondary data 

obtained from Lampung Climatology Station in 

the form of daily data from January 01, 2021 to 

April 30, 2024. The data measured includes 

minimum air temperature data, maximum air 

temperature, and average air temperature. 

Because the data used is based on a certain 

period of time, this air temperature data is 

classified as time series data. 

 

Research Methodology 

The LSTM model is built by initializing several 

parameters that will be used during testing. 

These parameters include the number of hidden 

neurons, batch size, and epochs. The hidden 

neurons are set at 5, 25, 50, and 100, while the 

batch sizes are 4, 16, 32, 64, and 128. The 

number of epochs is set at 50, 100, 150, and 200. 

Flowchart of the research methodology can be 

seen in the Figure 2. 

 
Fig. 2. Flowchart of Research Methodology. 

 

3. RESULT AND DISCUSSION 

 

The formation of the LSTM model is formed 

from various compositions of the divi-sion of 
training data and testing data. Then determine 
the most optimal hidden neu-ron, batch size and 
epoch parameters from the various parameter 
values given. 

Table 2. LSTM model accuracy 

value based on the number of 

hidden neurons. 

Neur
on 

Bat
ch 
Size 

Epo
ch 

RMSE MAPE 

X1 
X
2 

X3 X1 X2 X3 

5 4 50 
0,7
6 

1,4
0 

0,
82 

2,44
% 

3,51
% 

2,29
% 

25 4 50 
0,6
9 

1,4
5 

0,
82 

2,26
% 

3,62
% 

2,32
% 

50 4 50 
0,7
0 

1,4
8 

0,
82 

2,26
% 

3,67
% 

2,34
% 

100 4 50 
0,6
9 

1,6
4 

0,9
2 

2,25
% 

4,11
% 

2,68
% 

 

Based on Table 2, the LSTM model at minimum 

air temperature (X1) with hidden neuron 

parameters of 100 hidden neurons has the 

smallest RMSE and MAPE values, which are 

0.69 and 2.25%.  While the maximum air 

temperature (X2) and average air temperature 

have the smallest RMSE and MAPE values in the 

LSTM model formed from 5 hidden neurons.  

The smallest RMSE and MAPE values at 

maximum air temperature are 1.40 and 3.51%, 

while the smallest RMSE and MAPE values at 

av-erage air temperature are 0.82 and 2.29%. 

 

Table 3. LSTM model accuracy value based on 

the number of batch sizes. 
Batc
h 
Size 

Epoc
h 

RMSE MAPE 

X1 X2 X3 X1 X2 X3 

4 50 
0,6
9 

1,4
0 

0,8
2 

2,25
% 

3,51
% 

2,29
% 

16 50 
0,7
0 

1,5
3 

0,8
6 

2,29
% 

3,82
% 

2,40
% 

32 50 0,71 
1,5
9 

0,9
1 

2,35
% 

3,98
% 

2,56
% 

64 50 
0,7
3 

2,1
0 

0,9
6 

2,40
% 

5,07
% 

2,71% 

128 50 
0,7
4 

1,9
5 

0,9
8 

2,41
% 

4,79
% 

2,76
% 

Based on Table 3, the LSTM model on each 

variable has the smallest RMSE and MAPE 

values at the number of batch sizes of 4 batch 

sizes.  The smallest RMSE and MAPE values for 
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minimum air temperature (X1) are 0.69 and 

2.25%.  The smallest RMSE and MAPE values at 

maximum air temperature (X2) were 1.40 and 

3.51%, while the smallest RMSE and MAPE 

values at average air temperature (X3) were 0.82 

and 2.29%. 

Table 4. LSTM model accuracy value based on 

the number of epochs 
Batc
h 
Size 

Epoc
h 

RMSE MAPE 

X1 X2 X3 X1 X2 X3 

4 50 
0,6
9 

1,4
0 

0,8
2 

2,25
% 

3,51
% 

2,29
% 

4 100 
0,8
7 

1,5
0 

0,81 
2,74
% 

3,75
% 

2,30
% 

4 150 
0,8
6 

1,5
3 

0,77 
2,87
% 

3,75
% 

2,16
% 

4 200 
0,9
0 

1,5
4 

0,8
0 

2,96
% 

3,77
% 

2,21
% 

Based on Table 4, the LSTM model on the 

minimum air temperature (X1) and max-imum 

air temperature (X2) variables has the smallest 

RMSE and MAPE values at the number of 

epochs of 50 epochs.  The smallest RMSE and 

MAPE values for mini-mum air temperature 

(X1) are 0.69 and 2.25%, for maximum air 

temperature (X2) are 1.40 and 3.51%.  

Meanwhile, the average air temperature variable 

(X3) has the smallest RMSE and MAPE values at 

the number of epochs of 150 epochs with RMSE 

and MAPE values of 0.77 and 2.16%. 

 

Table 5. LSTM model accuracy value based on 

the training and testing data split 
Training / 
Testing 

RMSE MAPE 
X1 X2 X3 X1 X2 X3 

50% / 50 % 0,79 1,64 0,78 2,66% 3,93% 
2,29 
% 

60% / 40% 0,80 1,55 0,82 2,69% 3,87% 2,45% 

70% / 30% 0,76 1,36 0,76 2,53% 3,35% 
2,11 
% 

80% / 20% 0,69 1,40 0,77 2,25% 3,51% 2,16% 

90% / 10% 0,59 1,22 0,73 
1,90 
% 

3,15% 
2,10 
% 

Based on Table 5, testing the LSTM model on 

each variable based on the composi-tion of this 

dataset has the smallest RMSE and MAPE 

values, namely the model with the division of 

training data by 90% and testing data by 10%.  

The smallest RMSE and MAPE values for 

minimum air temperature (X1) are 0.59 and 

1.90%.  The smallest RMSE and MAPE values for 

maximum air temperature (X2) are 1.22 and 

3.15%, while for average air temperature (X3) 

are 0.73 and 2.10%. 

Thus, the best LSTM model for forecasting 

minimum air temperature (X1) is built with 100 

hidden neurons, a batch size of 4, 50 epochs, and 

a data split of 90% for training and 10% for 

testing. Similarly, the optimal LSTM model for 

maximum air temperature (X2) utilizes 5 hidden 

neurons, a batch size of 4, 50 epochs, and the 

same 90%/10% data split. For average air 

temperature (X3), the most effective LSTM 

model incorporates 5 hidden neurons, a batch 

size of 4, 150 epochs, and fol-lows the 90%/10% 

data partitioning scheme. These configurations 

are tailored to maximize the accuracy of weather 

predictions based on historical data. 

Forecasting on air temperature data which 

includes Minimum Air Temperature (X1), 

Maximum Air Temperature (X2) and Average 

Air Temperature (X3) based on the best Long 

Short Term Memory (LSTM) model can be seen 

in the following figure. 

 
Fig. 3. Minimum air temperature forecasting 

results (X1). 
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Fig. 4. Maximum air temperature forecasting 

results (X2). 

 
Fig. 5. Average air temperature forecasting 

results (X3). 

 

4. CONCLUSION 

 

Based on the discussion, the conclusions of this 

research are as follows: The best LSTM model for 

air temperature forecasting is determined by a 

dataset division of 90% for training and 10% for 

testing. This specific composition of the dataset 

divi-sion has proven to be the most effective in 

training the LSTM model for accurate air 

temperature prediction. 

 

For forecasting minimum air temperature (X1), 

the optimal LSTM model configu-ration includes 

100 hidden neurons, a batch size of 4, and 50 

epochs. In contrast, the best LSTM model for 

forecasting maximum air temperature (X2) 

utilizes 5 hidden neurons, a batch size of 4, and 

50 epochs. For average air temperature (X3), the 

ideal model configuration consists of 5 hidden 

neurons, a batch size of 4, and 150 epochs. These 

specific configurations have been identified as 

the most effective for predicting each respective 

temperature variable. 

 

The performance of these LSTM models is 

evaluated using Root Mean Square Er-ror 

(RMSE) and Mean Absolute Percentage Error 

(MAPE) values. The RMSE and MAPE for the 

best LSTM model predicting minimum air 

temperature (X1) are 0.59 and 1.90%, 

respectively. For maximum air temperature 

(X2), the RMSE is 1.22 and the MAPE is 3.15%. 

For average air temperature (X3), the RMSE is 

0.73 and the MAPE is 2.10%. Given that all 

MAPE values are below 10%, these LSTM models 

are highly effective for forecasting air 

temperature at the Lampung Climatology 

Station.. 
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