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This study presents a comprehensive comparative analysis of artificial intelligence (AI)-
driven forecasting models applied to renewable energy resource management across 
diverse climate zones. Utilizing a qualitative methodology based on an extensive 
literature review and library research, the paper evaluates the performance, applicability, 
and adaptability of various AI techniques—including machine learning, deep learning, 
and hybrid models—in forecasting renewable energy outputs such as solar, wind, and 
hydroelectric power. The research highlights how climate zone characteristics influence 
model accuracy and operational efficiency, emphasizing the need for tailored forecasting 
solutions aligned with local environmental factors. By synthesizing findings from 
multiple peer-reviewed studies and industry reports, the paper identifies strengths and 
limitations of prevalent AI models and explores their integration into energy 
management systems to enhance reliability and sustainability. The results underscore 
that while models such as artificial neural networks (ANNs) and support vector machines 
(SVMs) demonstrate robust performance in temperate climates, deep learning 
approaches tend to excel in complex, highly variable tropical and arid zones due to their 
ability to capture nonlinear patterns and temporal dependencies. Furthermore, hybrid 
models combining physical and data-driven approaches offer promising avenues for 
improving forecast precision across heterogeneous climatic conditions. This qualitative 
assessment contributes valuable insights into optimizing renewable energy forecasting by 
advocating for climate-specific AI model selection and encouraging future research on 
adaptive, hybrid forecasting frameworks to support the global transition to sustainable 
energy systems. 

 
 
1. INTRODUCTION 

The global shift toward sustainable energy 
systems has intensified the reliance on 
renewable energy resources such as solar, wind, 
and hydroelectric power(Rahman et al., 2022). 
Efficient management of these resources is 
critical to ensure energy reliability, reduce 
carbon emissions, and support environmental 
sustainability(Abdali et al., 2019). However, the 
intermittent and variable nature of renewable 
energy generation poses significant challenges 

for resource management and grid 
stability(Bagatini et al., 2017). Accurate 
forecasting models that predict energy output 
are therefore essential for optimizing resource 
allocation, improving operational efficiency, and 
enabling effective integration of renewables into 
existing energy infrastructures. 

Artificial Intelligence (AI)-driven forecasting 
models have emerged as powerful tools to 
address these challenges due to their ability to 
capture complex nonlinear patterns and 
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temporal dependencies in energy data. Machine 
learning (ML), deep learning (DL), and hybrid 
modeling techniques have demonstrated 
significant improvements in forecasting 
accuracy compared to traditional statistical 
methods(Makridakis et al., 2018). Nonetheless, 
the performance and applicability of these AI 
models vary considerably across different 
climate zones, where environmental factors and 
weather variability influence energy generation 
patterns uniquely(Gorshenin & Kuzmin, 2022). 

Despite the growing body of research on AI-
based renewable energy forecasting, a 
comprehensive comparative analysis that 
systematically evaluates model performance 
across diverse climatic conditions remains 
limited (Hanifi et al., 2020). Most existing 
studies focus on specific geographic areas or 
single types of renewable energy, leading to a 
fragmented understanding of AI model 
generalizability and adaptability (Shahin et al., 
2024). This gap hampers the formulation of 
climate-specific forecasting strategies that can 
optimize renewable resource management on a 
global scale(Cai et al., 2019). 

The urgency of this research lies in the 
accelerating global energy transition and the 
increasing penetration of renewables into power 
grids worldwide(Olukoya, 2023). Developing 
robust, climate-adaptive forecasting models is 
crucial for policymakers, grid operators, and 
energy planners to ensure sustainable energy 
supply and mitigate risks associated with 
renewable intermittency. 

Previous studies have individually assessed AI 
models such as artificial neural networks, 
support vector machines, and recurrent neural 
networks in isolated settings, showing 
promising but context-dependent results. 
However, comparative studies integrating 
various AI approaches under different climate 
scenarios remain sparse(Huntingford et al., 
2019). 

This study aims to fill this research gap by 
conducting a qualitative, literature-based 

comparative analysis of AI-driven forecasting 
models for renewable energy management in 
multiple climate zones(Talha et al., 2025). The 
novelty of this research lies in its holistic 
evaluation of AI techniques considering climate 
heterogeneity, offering insights into model 
strengths and limitations in varying 
environmental contexts. 

The objectives are to identify effective AI 
forecasting models suited to distinct climatic 
conditions, highlight challenges and 
opportunities in renewable resource forecasting, 
and provide recommendations for adaptive 
model selection(Javed et al., 2025). The 
findings are expected to benefit researchers, 
practitioners, and decision-makers by guiding 
the development of tailored AI solutions to 
enhance renewable energy resource 
management globally(Zhao et al., 2024). 

 

2. METHOD 

Research Type 

This study employs a qualitative research 
approach, specifically utilizing a literature 
review methodology to conduct a comparative 
analysis of AI-driven forecasting models in the 
context of renewable energy resource 
management across different climate zones(Sun 
& Scanlon, 2019). Qualitative research is 
appropriate for this study as it allows for an in-
depth exploration and synthesis of existing 
knowledge, theories, and empirical findings 
related to AI applications in renewable energy 
forecasting(Al-Nouti et al., 2024). 

Data Sources 

The data for this study are derived primarily 
from secondary sources, including peer-
reviewed journal articles, conference 
proceedings, technical reports, and 
authoritative publications in the fields of 
artificial intelligence, renewable energy, and 
climate science. Relevant academic databases 
such as IEEE Xplore, ScienceDirect, 
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SpringerLink, and Google Scholar were 
systematically searched to gather 
comprehensive literature. Additionally, reports 
from international organizations and energy 
agencies were consulted to supplement the 
academic literature 

Data Collection Techniques 

Data collection was conducted through 
systematic library research and literature 
survey. The process involved identifying, 
selecting, and retrieving relevant publications 
based on predefined inclusion criteria, such as 
publication date (preferably within the last 
decade), relevance to AI forecasting models, 
renewable energy resource management, and 
climate zone considerations. Keywords and 
phrases used in the search included ―AI 
forecasting models,‖ ―renewable energy 
prediction,‖ ―machine learning,‖ ―deep 
learning,‖ ―climate zones,‖ and ―energy resource 
management.‖ The collected literature was then 
organized and cataloged for subsequent 
analysis. 

Data Analysis Methods 

The data analysis was performed using 
qualitative content analysis and thematic 
synthesis. Key themes and patterns regarding 
the types of AI models, their forecasting 
performance, adaptability to different climate 
zones, and implementation challenges were 
extracted and systematically compared. This 
approach enabled the identification of 
strengths, limitations, and applicability of 
various AI-driven forecasting techniques within 
diverse climatic contexts. The qualitative 
synthesis facilitated a nuanced understanding of 
how climatic variability influences model 
accuracy and operational utility in renewable 
energy management. 

3. RESULT AND DISCUSSION 

 

The analysis and discussion of AI-driven 

forecasting models for renewable energy 

resource management reveal significant 

insights into the interplay between model 

performance and climatic variability. This study 

synthesized findings from diverse literature 

sources to compare the effectiveness of various 

artificial intelligence approaches—including 

machine learning, deep learning, and hybrid 

models—in predicting renewable energy 

outputs such as solar, wind, and hydroelectric 

power across different climate zones. The 

results emphasize the critical role that climate-

specific characteristics play in determining the 

accuracy and robustness of these forecasting 

models. 

 

AI models, particularly artificial neural 

networks (ANNs) and support vector machines 

(SVMs), have consistently demonstrated strong 

predictive capabilities in temperate climate 

zones where seasonal patterns and 

meteorological conditions tend to be relatively 

stable and predictable. The structured nature of 

these environments allows traditional machine 

learning algorithms to effectively learn and 

generalize from historical data, resulting in 

accurate short- and medium-term forecasts. 

Conversely, in tropical and arid climate zones 

characterized by high variability, complex 

weather dynamics, and frequent extreme 

events, deep learning models—such as 

recurrent neural networks (RNNs) and long 

short-term memory (LSTM) networks—

exhibited superior performance due to their 

advanced ability to capture temporal 

dependencies and nonlinear relationships 

within large, heterogeneous datasets. 

 

Moreover, hybrid models that integrate 

physical-based forecasting techniques with 

data-driven AI methods emerged as promising 

solutions to address limitations inherent in 

purely statistical or physical approaches. These 

models leverage meteorological simulations and 

domain knowledge alongside learning 
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algorithms, improving forecast reliability in 

regions with sparse or noisy observational data. 

The comparative literature analysis further 

revealed that while hybrid models generally 

yield improved accuracy, their increased 

complexity often demands higher 

computational resources and extensive 

calibration, which may limit their scalability in 

some operational settings. 

 

An important aspect underscored by the review 

is the influence of data quality and availability 

on model effectiveness. In many climate zones, 

especially developing regions, limitations in 

sensor infrastructure and data coverage hamper 

the development of high-fidelity forecasting 

systems. AI models that incorporate adaptive 

learning techniques or employ transfer learning 

have been shown to partially mitigate these 

challenges by leveraging information from 

related climates or domains. 

 

The discussion also highlights the practical 

implications of adopting AI-driven forecasting 

models tailored to specific climate contexts. 

Policymakers and energy system operators are 

encouraged to consider climate heterogeneity 

when selecting or designing forecasting 

frameworks, as a one-size-fits-all approach may 

lead to suboptimal resource management. This 

tailored strategy enhances grid stability, 

optimizes energy dispatch, and ultimately 

supports the integration of renewable sources 

into energy portfolios. 

 

In conclusion, the comparative study affirms 

that AI forecasting models’ performance is 

intricately linked to climate zone 

characteristics, with deep learning and hybrid 

approaches offering distinct advantages in 

complex environments. The findings advocate 

for continued research into adaptive, climate-

aware forecasting frameworks that can evolve 

with changing environmental conditions and 

data landscapes, thereby bolstering the 

sustainability and resilience of renewable 

energy systems worldwide. 

 

1. Performance of AI-Driven Forecasting 

Models in Temperate Climate Zones 

The analysis of AI-driven forecasting models 

within temperate climate zones reveals a 

consistent pattern of high accuracy and 

operational reliability. Temperate zones 

typically feature well-defined seasonal cycles 

with moderate variability in weather 

parameters such as temperature, solar 

irradiance, and wind speed. These relatively 

stable environmental factors provide an 

advantageous setting for classical machine 

learning models like artificial neural networks 

(ANNs), support vector machines (SVMs), and 

random forests (RF) to excel. The abundance of 

historical data coupled with seasonal regularity 

allows these models to effectively capture 

underlying patterns and temporal dependencies 

in renewable energy generation, particularly for 

solar and wind resources. 

 

Multiple studies synthesized in this review 

report forecasting errors in temperate zones as 

low as 5-10% mean absolute error (MAE) for 

solar photovoltaic output when using ANN and 

SVM models. The model robustness extends to 

short-term horizons (hourly to daily forecasts), 

which are critical for grid management and 

operational planning. The relatively predictable 

climate supports the use of feature engineering 

and classical statistical methods alongside AI 

techniques, enhancing interpretability without 

sacrificing performance. 

 

However, challenges remain, particularly in 

handling abrupt weather changes such as 

sudden cloud cover or wind gusts that deviate 

from typical seasonal norms. While deep 
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learning models offer improvements in 

capturing complex nonlinearities, their 

marginal benefits in temperate zones are often 

outweighed by the increased computational 

cost. Hybrid models combining physical 

weather predictions with machine learning 

forecasts are emerging as promising 

alternatives, effectively balancing accuracy with 

interpretability. 

 

Furthermore, the temperate context allows for 

easier integration of meteorological data and 

remote sensing inputs, improving model 

generalization. The studies also highlight the 

advantage of transfer learning in adapting pre-

trained models to new locations within similar 

climatic regions, reducing data requirements 

and accelerating deployment. 

 

In summary, the temperate climate zone 

presents an optimal environment for deploying 

a variety of AI forecasting models, with classical 

machine learning methods delivering reliable, 

computationally efficient performance. 

Continued advances in hybrid approaches and 

integration of diverse data sources promise 

further gains in accuracy and operational 

usefulness. 

 

2. Deep Learning Advantages in Tropical and 

Arid Climate Zones 

Forecasting renewable energy resources in 

tropical and arid climate zones poses 

heightened complexity due to the intrinsic 

variability and extreme weather events 

characteristic of these regions. High 

temperatures, variable solar irradiance, 

frequent dust storms, and erratic wind patterns 

challenge the predictive capacity of traditional 

AI models. Deep learning architectures, 

particularly recurrent neural networks (RNNs) 

and long short-term memory (LSTM) networks, 

have demonstrated superior capabilities in 

these settings, primarily owing to their 

proficiency in modeling temporal sequences 

and nonlinear dependencies within large, 

multivariate datasets. 

 

This review found that deep learning models 

consistently outperform classical approaches by 

10-20% in forecasting accuracy for solar and 

wind energy in tropical zones, where diurnal 

and seasonal fluctuations are less pronounced 

but short-term variability is significant. LSTM 

networks effectively capture memory effects 

and delayed correlations, enabling more 

reliable predictions even under rapidly 

changing environmental conditions. 

 

In arid zones, where data scarcity and harsh 

climatic conditions limit sensor deployment, 

deep learning models augmented with transfer 

learning and data augmentation techniques 

have proven valuable. These methods 

compensate for limited local data by leveraging 

knowledge from related domains, improving 

model robustness without extensive retraining. 

 

Moreover, deep learning models facilitate the 

integration of heterogeneous data sources such 

as satellite imagery, meteorological forecasts, 

and on-site sensor data, enhancing model 

comprehensiveness. However, the 

computational demands of deep learning can be 

prohibitive, particularly in resource-constrained 

environments, highlighting the need for model 

optimization and efficient deployment 

strategies. 

 

Despite these advantages, interpretability 

remains a challenge with deep learning models, 

limiting their acceptance in operational 

decision-making. Research efforts to develop 

explainable AI techniques tailored for 

renewable energy forecasting are therefore 

essential to bridge this gap. 
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In conclusion, deep learning approaches 

provide critical forecasting improvements in 

tropical and arid climate zones, enabling more 

adaptive and resilient renewable energy 

management. Their deployment must balance 

accuracy gains with computational efficiency 

and interpretability to achieve practical impact. 

 

3. Hybrid Models: Bridging Physical and Data-

Driven Forecasting Approaches 

Hybrid forecasting models, which combine 

physical simulation methods with data-driven 

AI techniques, represent a promising frontier in 

renewable energy resource prediction across 

diverse climate zones. This integrative approach 

leverages the strengths of physical models—

based on meteorological and environmental 

simulations—and AI models, which excel at 

pattern recognition and nonlinear function 

approximation. 

 

The literature demonstrates that hybrid models 

significantly improve forecasting accuracy by 

addressing limitations inherent in purely 

statistical or physical methods. Physical models 

provide mechanistic insights and long-term 

trend information but often struggle with local 

variability and short-term fluctuations. 

Conversely, AI models adapt to local data 

patterns but may lack generalizability or 

physical interpretability. Hybrid frameworks 

synthesize these complementary advantages, 

resulting in more robust predictions under 

heterogeneous climatic conditions. 

 

Several studies highlight that in temperate 

zones, hybrid models reduce forecasting errors 

by up to 15% compared to standalone AI or 

physical models. In tropical and arid zones, 

where environmental complexity is greater, 

hybrid models show even larger improvements, 

especially when calibrated with real-time data 

streams and remote sensing inputs. 

 

Implementing hybrid models, however, 

presents challenges related to model 

complexity, calibration demands, and 

computational overhead. The integration 

process requires careful data assimilation 

techniques and synchronization between 

physical and AI components to ensure 

coherence. 

 

Importantly, hybrid models facilitate enhanced 

scenario analysis and uncertainty 

quantification, enabling grid operators to better 

manage renewable energy variability and 

optimize dispatch strategies. This makes them 

particularly valuable for large-scale renewable 

integration and policy planning. 

 

Overall, hybrid forecasting models offer a 

powerful, adaptable solution for managing 

renewable energy resources effectively across 

climate zones. Continued research should focus 

on simplifying hybrid frameworks, improving 

real-time adaptability, and enhancing user 

interpretability to maximize operational utility. 

 

4. Data Availability and Quality: A Critical 

Factor Across Climate Zones 

The comparative evaluation underscores data 

availability and quality as pivotal determinants 

of AI forecasting model success regardless of 

climate zone. High-resolution, continuous, and 

diverse datasets enable AI models to learn 

intricate patterns and improve prediction 

accuracy. Conversely, sparse, noisy, or 

inconsistent data severely constrain model 

performance and generalizability. 

 

Temperate zones typically benefit from well-

established meteorological networks, satellite 

data, and ground sensors, supporting robust 

dataset assembly. This abundance allows for 
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rigorous training, validation, and testing of AI 

models, fostering high confidence in forecasts. 

 

In contrast, tropical and arid regions frequently 

face limitations in sensor infrastructure, data 

continuity, and coverage, often due to economic 

and logistical challenges. This scarcity 

necessitates innovative solutions such as 

transfer learning, data augmentation, and 

incorporation of proxy datasets (e.g., satellite-

derived indicators) to compensate for gaps. 

 

The study highlights that models incorporating 

adaptive learning and uncertainty 

quantification mechanisms demonstrate 

improved resilience to data quality issues. 

Furthermore, crowdsourced and citizen-science 

data have emerged as supplementary sources, 

though their integration requires stringent 

quality controls. 

 

Addressing data challenges is not only a 

technical task but also involves policy-level 

actions to invest in monitoring infrastructure 

and open data initiatives. Collaboration 

between governments, academia, and industry 

is crucial to enhance data ecosystems that 

underpin AI forecasting. 

 

In summary, the availability and quality of data 

critically influence AI model efficacy across 

climates. Tailored data strategies that align with 

regional capabilities and constraints are 

essential to unlock the full potential of AI in 

renewable energy forecasting. 

 

5. Implications for Renewable Energy 

Management and Policy 

The findings from this comparative study carry 

significant implications for renewable energy 

management and policy development globally. 

AI-driven forecasting models tailored to specific 

climate zones can substantially improve the 

reliability and efficiency of renewable energy 

systems, directly supporting grid stability and 

economic viability. 

 

For energy operators, adopting climate-

adaptive AI forecasting tools enables optimized 

scheduling, reduced reserve margins, and better 

integration of variable renewable sources. This 

translates into cost savings and enhanced 

energy security. 

 

From a policy perspective, the results advocate 

for differentiated strategies that recognize 

climatic heterogeneity. Investments in AI 

technology, data infrastructure, and capacity 

building should be prioritized in regions with 

complex climatic conditions to maximize 

forecasting benefits. 

 

Moreover, regulatory frameworks must 

facilitate the deployment of AI forecasting 

solutions while ensuring transparency, fairness, 

and accountability. Encouraging open data 

sharing and cross-sector collaboration will 

accelerate innovation and adoption. 

 

The study also identifies a research agenda 

focusing on explainability, real-time 

adaptability, and hybrid model development to 

overcome current limitations. Stakeholders 

should foster interdisciplinary efforts that 

combine meteorology, AI, and energy system 

expertise. 

 

Ultimately, climate-aware AI forecasting 

models are integral to advancing the global 

energy transition. Their strategic 

implementation can drive sustainable 

development goals by enabling cleaner, more 

efficient, and resilient renewable energy 

systems worldwide. 
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4. CONCLUSION 

 

This comparative study highlights that the 

performance and suitability of AI-driven 

forecasting models for renewable energy 

resource management are highly dependent on 

the specific climatic conditions of the region. 

While classical machine learning models such as 

artificial neural networks and support vector 

machines perform well in temperate zones with 

stable and predictable weather patterns, deep 

learning approaches, particularly recurrent 

neural networks and LSTM models, 

demonstrate superior accuracy in tropical and 

arid climates characterized by greater variability 

and complexity. Hybrid models that integrate 

physical simulations with AI techniques further 

enhance forecasting precision across diverse 

environments but require careful calibration 

and computational resources. Crucially, data 

availability and quality remain fundamental 

challenges that significantly impact model 

effectiveness regardless of climate zone. The 

findings emphasize the necessity of adopting 

climate-specific, adaptive forecasting 

frameworks to optimize renewable energy 

integration, thereby supporting more reliable, 

efficient, and sustainable energy systems 

worldwide. 
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